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ABSTRACT 

Let G be a group that is given by a free presentation G = F/R, and let 

74 R denote the fourth term of the lower centrM series of R. We show that 

if G has no elements of order 2, then the torsion subgroup of the free 

central extension F/[74R, F] can he identified with the homology group 

//6 (G, Z/2Z). This is a consequence of our main result which refers to the 

homology of G with coefficients in Lie powers of relation modules. 

1. In t roduc t ion  

For an (additively written) free abelian group A, let LA denote the free Lie ring 

on A. Thus if .4 is a free Z-basis of A, LA is the free Lie ring on the set .4, and 

the Z-span of .4 in LA can be identified with A. The •th free Lie power L"A of 

A is the Z-span of all left-normed Lie products [al, a2 , . . . ,  an] ( e l , . . . ,  a ,  �9 A) 

in LA. Let G be a group and suppose that the free abelian group A is a right G- 

module. Then the G-action on A extends uniquely to a G-action on LA turning 

the Lie powers L"A into G-modules (for g �9 G, [al, . . . ,  an]g = [alg,.. . ,  a,g]). 

Now suppose that G is given by a free presentation. 

(1.1) 1 --* R--* F--~-,G--* 1, 

where F is a non-cyclic free group, and let R~b = R / R  t denote the relation 

module stemming from (1.1). Thus R~b is the abelianized normal subgroup R 

regarded as a right G-module via conjugation in F. The homology H.(G, L"R&b) 

of G with coefficients in the Lie power L"R~b (n >_ 2) has been studied in [12], 
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[4]. This work was mainly motivated by the group theoretic relevance of the zero 

dimensional homology group Ho(G, L'*R~b). Let %,R denote the nth term of the 

lower central series of R. Then there is an isomorphism 

(1.2) Ho( G, Ln Rab ) ~- 7nR/[TnR, F], 

which enables us to interpret results on homology of Lie powers in purely group 

theoretic terms. The quotient on the right hand side of (1.2) is the kernel of the 

free central extension 

(1.3) 1 ~ 7,R/[7,,R, F] --0 F/[7,,R, F] ~ F/7 ,R ---* 1. 

While F/7~R is always torsion-free, elements of finite order may occur in the 

kernel of (1.3), even when G = F / R  is torsion-free. This was first discovered by 

C.K. Gupta [2] for the special case when n = 2 and R = F I. Since then, torsion 

in the free central extension (1.3) has been studied in a number of papers. We 

mention the pioneering work of Yu. V.  Kuz'min [7], [81 on the case n = 2, and 

refer to [10], [3] for a detailed survey of these matters. 

It is known that for k _> 1 the homology group Hk(G, LnRab) are periodic 

groups of finite exponent and that Ho(G, L"R,b) decomposes into the direct 

sum of a free abelian group and a periodic group of finite exponent. Moreover, 

the relevant exponents divide n if n > 3, and 4 for n = 2 [12]. Much more can 

be said in case when n = p,p a prime. It was proved in [4, Corollary 8.3] that if 

G has no elements of order p, then there are isomorphisms 

(1.5) Hk(G, LPRab) ~ Hk+4(G, Zp) (k ~_ 1) 

where Z v = Z/pZ regarded as a trivial G-module, and for trio(G, LPRab), the 

torsion subgroup of Ho(G, LrRab), we have 

(1.5) tHo(G, LVR,b) ~- H,(G, Zv). 

In particular, the torsion subgroup of F/[TrR , F] can be identified with the 

homology group H4(G, Zr). The isomorphisms (1.4) and (1.5) are, in fact, a 

special case of a more general result, namely, a long exact sequence involving 

H~(G, LrR~,b) and trio(G, LvR~,b) among other things. This long exact sequence 

[4, Theorem 8.1] was obtained for arbitrary G. In case when G has no p-torsion, 
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some of its members vanish, and we are left with the isomorphisms (1.4) and 

(1.5). The isomorphism (1.5) has earlier been established in [10]. 

While (1.4) and (1.5) give a precise description of the torsion in H.(G, L"R~b) 
(and F/[%R, F]) in ease when n is a prime p and G has no p-torsion, not much 

was known in the ease when the degree n is a composite number. In particular, 

it was not known if non-trivial elements of finite order occur at all in (1.3). In 

this paper we study the case n = 4. Our main result reads as follows. 

THF.OREM 6.3: Let G be a group given by a free presentation (1.1). I fG has no 

dements of order 2, then 

Hk(G, L4R,b) ~- Hk+e(G, Z2) 

for a/l k > 1, and 

tHo(G,L'R~b) ~- He(G, Z2). 

In view of (1.2) this gives: 

COROLLARY: If G = FIR has no 2-torsion, then the torsion subgroup of the 

quotient F/[74R, F] is isomorphic to He(G, g2). 

In particular, for R = F '  we get that 

F/[F', F', F', F', F], 

the free centre-by-(nilpotent of class 3)-by-abelian group, is torsion-free if d = 

rank F _< 5, and that it contains an elementary abelian 2-group of rank ( d ) 

when d > 6. Also, we see that the absence of involutions in G implies that all 

non-trivial torsion elements in Ho(G, L4R~b) have order 2. Hence, the above 

mentioned bound n for the exponent of tH,(G, L"Rab) i n >_ 3) is not optimal in 

this case. The problem of whether elements of order 4 may occur in H.  (G, L4R~b) 

when G has 2-torsion remains open. 

It is interesting to compare Theorem 6.3 with similar results on other polylinear 

powers of relation modules. For, let T"RLb, A"R~b, MaR~b denote the nth tensor 

power, the nth exterior power, and the nth free metabelian Lie power of Rab, 

respectively. Then we have for k >_ 1 under certain conditions on G, which are 

given below, 

(1.6) /'/k(G, T4R,b) ~ Hk+sG, 
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I-I/~(G, A4Rab) ~ Hk+s(G, Z2) (~ Hk+7(G, Z3) ~ Hk+~(G,Z~), 

(1.8) /'Ik(G, M4R,,b) ~ .H'k+'/(G, Z2) (~ Hk+e(O, Z4) (~/"Ik+4(G, Z2). 

The isomorphism (1.6) is an easy consequence of MacLane's cup product reduc- 

tion theorem and does not require any conditions on G. The isomorphism (1.7) 

was established in [5] under the condition that G has no elements of order 2 

and 3, and (1.8) was obtained in [11] for 2-torsion-free G. There are similar 

results for k = 0. Since for prime degree p and G without p-torsion one has 

Hk(G, MPR,b) ~ ~/k(G, LPR~) ~ ~k+4(G, Zp),k _> 1 (see [3]), the difference in 

the homological behaviour of M4R~b and L4R~b appears quite surprising. Fi- 

nally, we mention that a complete description of the torsion in Hj,(G, A"R~b) for 

arbitrary k _> 0, n _> 2 and G without n(n - 1)-torsion has recently been given in 

[6]. It would be desirable to have a similarly complete result for H.(G, LnR~b). 
This paper is meant as a first step to tackle this problem for non-prime degree n. 

The paper is organized as follows. Notation and some preliminary notions are 

introduced in Section 2. The 4th Lie power L4B of a G-module B, which is 

an extension of a Z-free G-module A by a Z-free G-module C, is examined in 

Sections 3-5. In particular, in Section 5 we discuss a homomorphism 

L4B ~ (C | B) A (C | B),  

which plays a key role in the whole approach. Finally, in Section 6, we exploit the 

discussion in the previous sections to examine the homology of G with coefficients 

in the fourth Lie power of the augmentation ideal IG of 7.G and the relation 

module Rab. It turns out that Hk(G, L4IG) is trivial for k _> 1 and 2-torsion-free 

G (Theorem 6.2), and this is one of the ingredients of the proof of our main result 

on H.(G, L4R~b). 

2.  P r e l i m i n a r i e s  

In this section we introduce some notation and record some preliminary facts for 

further reference. 

2.1. LIE POWERS. As in Section 1, for a Z-free right G-module A, LA denotes 

the free Lie ring on A and L"A denotes the nth Lie power of A. The latter 

will be regarded as a G-module with diagonal action. Let .4 be a free Z-basis 
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of A and assume that `4 is totally ordered. Then Hall's basic commutators can 

be defined in the usual way, and the basic commutators of weight n form a free 

Z-basis of L"A (see, e.g., [9, Chapter 5]). In particular, L4A is as a Z-module 

freely generated by the basic commutators 

(2.1) [ U l ~ 2 , U 3 , U 4 ] ,  t t l  > U2 < U3 _~ U4, 

(2.2) [[u,, u21, [=3, ~,11, ~ > -2,  -~ > . . ,  [ul, ~21 > [=3, - , ]  

(Ul,U2,Us,u4 6 ,4). Let `41,`42,`4s,A4 be subsets of ,4. By [`41,`42,`4s,`44] 

we denote the set of all basic commutators (2.1) with ui 6 `4i (i = 1 , . . . , 4 ) ,  

and by [[`41, ̀ 42], [.As, JUt]] we denote the set of all basic commutators (2.2) with 

ui �9 `4i (i = 1 , . . . ,  4). For example, if `4 = `4' U ̀ 4" (disjoint union) and u' < u" 

for all u' �9 `4' and u" �9 `4", we have 

[ ~ " , ~ ' , ` 4 ' , ` 4 " 1  {[u~ ' ,  ' ' " '  ' ' " " ` 4 " ,  ' < u ~ } .  --~ t t l ,  lt2~ tt2J; Ul ,  U 2 �9 .,4 t, U l , U  2 ~ U 1 _ 

Here the conditions u~' > u~, u~ _< u~ are automatically fulfilled. Also, we have 

[[,4', A"], [A', A']] = r since there is no basic commutator (2.2) with ul 6 A', 

u2 6 A". 
Finally, for arbitrary submodules A1, A2, As, A4 of A we denote the sub- 

module of L4A generated by all left normed commutators In1, a2,as,a4] with 

ai E Ai (i = 1 , . . .  ,4) by [A1,A2,As,A4]. 

2.2. TENSOR~ EXTERIOR AND SYMMETRIC POWERS. For A as above, let T"A 

denote the r~th tensor power 

T"A = A |  | A (n times), 

T~ = Z, and by TA we denote the tensor ring over A. Thus 

oo 

TA = ~ TnA. 
.=0 

The tensor power T"A will also be regarded as a G-module with diagonal action. 

It is well-known that TA may be identified with the universal envelope of LA. 

The restriction of the canonical embedding LA ---., TA to L"A gives an embedding 

v,: L"A "--', T"A. 
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The tensor power TnA may also be regarded as a module for S., the symmetric 

group of degree n, by setting 

( a l O . . . O a n ) T  -1 = a l v | 1 7 4  ( a l , . . . , a n  e A,  7 e Sn) .  

We need a special element in the group ring ZSn. Let f~l --- 1 and, for n > 1, let 

[2. = (1 - (1, 2))(1 - (1, 2, 3 ) ) . . .  (1 - (1, 2 , . . . ,  n)) e ZSn. 

The element fin has the useful property 

(2.3) [2~ = na .  

Also, a simple induction shows that for a l , . . . ,  an E A one has 

(2.4) [a l , . . .  ,an]Yn = (al 0 " "  | an)~n. 

Since the left normed commutators of degree n generate LnA,  the embedding Vn 

is completely determined by (2.4). In particular, for n -- 4, a, b, c, d E A, we have 

[a,b,c,a~v, = a | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  

- d | 1 7 4 1 7 4 1 7 4 1 7 4  

We also have the projection Pn: T n A  -'* LnA given by (al | . . .  | an)pn = 

[ a l , . . . ,  an]. The embedding vn and the projection pn are related by Wever's 

formula [9, Chapter 5] 

(2.5) vnp,  = n, 

i.e. the composite of vn and pn amounts to multiplication by n in LnA.  It is well 

known that the elements 

UlVi x ~ U21/i2 ~ �9 ~ Uml/im~ 

where uj E L i i A  are basic commutators such that ul <_ u2 _< "." _< u, .  and 

il + i2 + " "  + i m  = n, form a free Z-basis of T " A  [9, Chapter 5]. In particular, 

the elements 

Ul OU2, vV2, 
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where u l , u 2  E ,4 with Ul _< u2, and v runs over the set of all basic commutators 

of weight 2, form a free Z-basis of T 2 A  = A | A, and the elements 

ul  | u2 | u3, u | vv2, wv3, 

where u, u l ,  u2, u3 E A ,  u l  <_ u2 <_ u3, and v and w run over the sets of all basic 

commutators of weight 2 and 3, respectively, form a free Z-basis of T3A .  

Finally, by AnA and S n A  we denote the nth exterior and symmetric powers of 

A. The exterior and symmetric tensors are written as al A. . . A an and al o . . .  o an, 

respectively. For n = 2 we also use the notation A2A = A ^ A for the exterior 

square, and S 2 A  = A o A for the symmetric square. Note that L 2 A  -~ A ^ A .  

Both AnA an S'~A will be regarded as G-modules with diagonal action. 

2.3 THE RELATION AND AUGMENTATION SEQUENCES. Let G be a group, ZG 

the integral group ring of G. The augmentation ideal, that is the kernel of the 

augmentation map ZG ~ Z, will be denoted by I G .  Thus we have a short exact 

sequence 

O ~ I G ~ Z G ~ Z ~ O  

which will be referred to as the augmentation sequence. Now suppose that G is 

given by a free presentation (1.1), let X. be a free generating set for F,  and let 

Rsb be the corresponding relation module. Then there is a short exact sequence 

O ~ R,,b J' * P r * IG----} O 

where P is a free G-module with free generators ez (z E X) and the epimorphism 

a is determined by ez ~ (z~r  - 1); see, e.g., [1, Chapter 2]. This short exact 

sequence is usually called the relation sequence stemming from (1.1). 

2.4 HOMOLOaY. Our terminology and notation concerning homology of groups 

is standard and in line with [1]. For further reference we record some results on 

the homology of certain G-modules. Let D be a Z-free G-module, and consider 

the commutative diagram 

D | ThRob , D | T" - IR~,b  | P 

D | LnR~b 
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where the vertical homomorphism is 1 | v,: D | L"R~b ~ D | T"R~b and the 

horizontal homomorphism is 

1 @ 1 @.. .  @ 1 @ p: D @ R~b |  | R~s @ R~b ) D @ Rub |  | Rub | P 

(p is the embedding from the relation sequence). Similarly, using the inclusion 

map IG ~ ZG, we obtain a commutative diagram 

D @ T"IG �9 D | T " - I I G  @ ZG 

D @ L"IG 

Note that D @ T"-IR~b @ P and D @ T " - l I G  @ ZG are free G-modules. 

LEMMA 2.1: 

(i) For any Z-free G-module D and n > 3, Hk(G, D | L"R~b), k >_ 1, and the 

kernel of the homomorphism 

Ho(G, D | L"R,b) --* Ho(G, D | T"-IR~b | P) 

induced by the diagonal homomorphism in (2.6) are periodic groups of 

exponent dividing n. 

(ii) For any Z-free G-module D and n >_ 3, Hk(G, D | L"IG), k >_ 1, and the 

kernel of the homomorphism 

Ho(G, D | L"IG) -~ Ho(G, D | T"- I  lG | ZG) 

induced by the diagonal homomorphism in (2.7) are periodic groups of 

exponent dividing n 2. 

(iii) h r G has no elements of order 2, then 

Hk(C, IV) ^ (XG | m) Hk+,(V, 

for edl k > 1. 

(iv) /s G has no elements of order 2 and A is a free G-module, then L4A and 

A h A are free G-modules as well. 

Proof." For the proof of (i) we refer to [12], Theorem 4.1 and Lemma 4.1. To 

prove (ii), we apply the homology functor to (2.7): 

Hk(G,D| . Hk(G,D|174 

I / 
H~(G, D | L"IG) 
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The Sn-action on T"IG induces an S,-action on Hk(G, D | T"IG). By [4, 

Lemma 5.3], the action of a permutation r E Sn on the kernel of the horizontal 

homomorphism in (2.8) amounts to multiplication by its sign. In particular, 

this kernel is annihilated by f t ,  E ZS,.  On the other hand, in view of (2.3) 

and (2.4), fin acts as multiplication by n on the image of Hk(G, D | L"IG) in 

Hk(G, D | T"IG). Now let a E H~(G, D | L"IG) be an element of the kernel 

of the diagonal in (2.8). Then aHk(1 | ~,) is in the kernel of the horizontal 

homomorphism. Consider the element aHk(1 | vn)~,Hk(1 | Pn). Then we have, 

on the one hand, 

aHk(1 | = 0 

as aH~(1 | v,) is annihilated by fl~. On the other hand, we have, using the 

above remark and (2.5), 

aHk(1 | | = naHk(1 = n a. 

Consequently, the kernel of the diagonal in (2.8) is annihilated by n 2, and (ii) 

follows on noting that Hk(G, D | T"-IIG | ZG) = 0 for k >_ 1 as the coefficient 

module is free. 

To show (iii), we note that the tensor square IG | IG may be viewed as 

a relation module. Indeed, let F be the free group on {x~;g E G\{1)}, and 

consider the presentation of G determined by z~ --~ g. Then it is easily seen that 

the free module P from the relation sequence is isomorphic to IG | ZG, and the 

relation sequence takes the shape 

0 ~ IG| IG --* IG|  ~ IG --* 0, 

that is, the augmentation sequence tensored over Z on the left with IG. Hence 

IG | IG is isomorphic to a relation module, and now (iii) follows by (1.4). 

Finally, for a proof of (iv) we refer to [10, Theorem 3.11]. | 

3. A fi l trat ion for the  four th  Lie power  of  a m o d u l e  e x t e n s i o n  

Let G be a group, and let 

(3.1) 0 -* A -* B ~-L C -~ 0 

be a short exact sequence of Z-free G-modules, that is G-modules whose under- 

lying abelian groups are free Z-modules. We will identify A with its image in B. 
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Let .A and C ~ be free Z-bases of A and C, respectively. Then B has a free Z-basis 

B = .A U C (disjoint union), where C = {v; v/Y = v', v' E C'}. Assume .A and C 

totally ordered and suppose that these orderings are extended to a total ordering 

of B by setting u < v for all u E .A, v E C. Let s denote the set of all basic com- 

mutators of weight 4 defined over B. Thus s is a free Z-basis of L4B. In general, 

the ordering of the basic commutators of weight n > 2 may be chosen arbitrarily. 

In this paper, however, we will assume that the basic commutators of weight 2 

are ordered in such a way that [Ul, u=] < Iv, u I < Ivy, v21 for all u, ul, u2 E .4 and 

v, Vl, v2 E C. Then the set s decomposes into the disjoint union 

s = s Us U. . .  Us 

where 
~0  ~- 

~1 = 

,~2 = 

f :3  = 

f :4  = 

L~5 = 

L~6 = 

,~'r = 

Ls = 

~ 9  = 

,/~10 = 

Hence L4B decomposes into 

[c,c,c, cl u [[c,c],[c,c]], 
[c,.,t,c,c], 

[[c,c], [c,.411, 
[[c,.a], [c,.~]], 
[c,.a,.4,c], 

[ .~,~,c,c],  
[[c, c], [.4, .,,t]], 
[c,.a,.4, A], 
[[c, .a], [,4, .4]], 
[.,t, .a, .A, c], 
[.~, ~, .4, ~] u [[.4, .,4], [.A, ~]]. 

the Z-direct sum 

L4B = Lo "F L1 4 " "  Jr Llo, 

where Lt (0 < k < 10) denotes the Z-span of s in L4B. 

Now let 

V k = L k ~ - L k + 1 4 " - ~ - L 1 0  ( O < k < l O ) .  

It is easily seen that  the Vk Is are G-submodules of L4B. Thus we have got a 

G-module filtration 

(3.2) L4B = Vo D V1 D V2 5"" 5.0_ V1o 
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of L4B with free abelian quotients. Modulo V~, the set/:k-1 forms a free Z-basis 

of Vk-i/Vk(k = I, . . . ,  I0). Clearly, V~0 may be identified with the image of L4A 

in L4B under the canonical embedding L4A --* L4B induced by the inclusion 

map A ~ B. About the quotients of the filtration (3.2) we can say the following. 

PROPOSITION 2.1: There are G-module  i somorphisms 

(i) Vo/V~ ~ L4C, (vi) 

(ii) VI/V2 ~ (C | A | (C o C), (vii) 

(iii) Va/Vs ~ (C ^ C) | C | A, (viii) 

(iv) Vs/V, ~- (C | A) A (C | A), (ix) 

(v) V4/V5 ~- C @ (A o A) | C, (x) 

Vs/Ve ~- (A ^ A) | (C o C), 

Ve/V7 ~- (C A C) | (A A A), 

VT /Vs ~- C | SS A, 

Vs/V9 ~- C | A | (A A A), 
Vg/Vlo ~ LS A | C. 

Proof: Let al,a2,as,a4 E A, Cl,C2,C3,C4 E C, and let bl,b2,bs,b4 E B such that  

bifl = ci (1 < i < 4). The isomorphisms (i)-(x) are determined by the following 

maps: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

[cl, c2, cs, c41 ~ [bl, b2, bs, b4] + V1, 

c~ | a, | (c2 0 c~) ~ [b,, ~,~, h ,  b~] + V2, 

(c, ^ c2) | c3 | a, -~ [[b,, b~l, [b3, alll + V~, 

(cl | al)  ^ (c2 | a2) -~ [[b,, a,l, [b~, a211 + Y,, 

c, | (a,  0 a2) | c2 --* [b,, G1, a2, b2] + Vs, 

(~1 ^ ~2) | (c, o c2) -~ [~,, a2, c~, c21 + ~ ,  

Cl | (al o a2 o a3) ---+ [bl ,al ,a2,a3] -F Vs, 

c, | ~, | (a~ A a~) --, [[b,, all ,  [a2, a~]] + V~, 

[al,a2,a3] | Cl ---* [al ,a2,as ,bl]  + V10. 

It is easy to check that  these maps are correctly defined and that  they define 

indeed G-isomorphisms. We give a proof for (vi), and leave the rest to the 

reader. To verify (vi), note that  the map 

a, | a2 | c, | c2 --* [a,, a2, b,, b2] + V~ 

defines a homomorphism 

(3.3) A | A | C | C - .  Vs/Ve. 
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First of all, the map is correctly defined as if b~ and b~ are elements of B with 

b~fl = c, and b~fl = c2, then bl = b~ + a' and b2 = b~ + a" for some a ' ,a"  e A. 

Hence 

[al, a2, bl, b21 = lal, a2, b~ + a', b~ + a"] 

= [al,a2,b'~,b'2] + [al,a2,a',b'2] + [al,a2,b'~,a"] + [al,a2,a',a"] 

r b' b '1 = tal,a2, 1, 21 m~ 

as [al,a2,a',b~] E v91ra - b' a ''1 ,a  a' a 'n [ 1, tt2, I ,  J E V7 and [al 2, 1, J ~ V10. This shows 

that our map does not depend on the particular choice of the b's as inverse images 

of the c's under the epimorphism ft. Using the anticommutativity law and the 

Jacobi identity we have 

[al, a2, bl, b2] = -[a2, al,  hi, b2] 

and 
[al, a2, hi, hi] = [al, a2, b2, bl] - [ [b , ,  b2l, [a,, a2]l 

---- [al, a2, b2, bl] mod Vs 

as [[bl,b2], [al,a2]] E Vs. Hence the homomorphism (3.3) factors through 

(A h A) | (C o C) giving a G-homomorphism 

(3.4) (A A A) | (C o C) ---* Vs/Vs. 

Now (AAA) |  has a free Z-basis consisting of all elements (ul Auz)| ova) 
t I where ul ,u2 E .4, ul > uz, vx,v2 E C *, vl < v~, and it remains to note that the 

G-homomorphism (3.4) maps this basis one-to-one onto s + V6, a free Z-basis 

of Vs/Vs. Hence (3.4) is bijective and therefore an isomorphism. 

4. Sect ions  and submodules  of  L i B  

Let B as in Section 3, and consider the submodules [A, A, A, B] and [B, A, A, B] of 

L4B. It is easily seen that these submodules coincide with V9 and V4, respectively: 

[A,A ,A ,B]  = Vg, [B ,A ,A ,B]  = V4. 

Now consider the homomorphism 

(4.1) L I B  ~ C | 1 7 4 1 7 4  
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defined as the composite of 

v4: L4B --* B | B @B | B 

and 

77 

]3@ 1 @I | B @ B @ B @ B - - *  C @ B @ B @ C .  

Hence for bl, b2, ba, b4 E B we have 

[bl, b2, b3, b4] "--* blfl | b2 | b3 | b4f~ - b2~ | bl | b3 | b4fl . . . .  

Clearly, if al,  a2 E A -- ket ~, then the homomorphism (4.1) maps the left normed 

commutator [bl,az,as,b2] E [B ,A ,A ,B]  to bl~ | al | as | bsfi. Hence the 

restriction of (4.1) to [B ,A ,A ,B]  maps this submodule onto C | A | A | C c_ 

C | B | B | C. Consequently, the map 

[bl,al,a2,b2] --~ bl~ | al | as | bs~ 

defines a G-homomorphism 

r [B,A ,A ,B]  --* C | A @ A | C. 

LEMMA 4.2: Ke r r  = VT. 

Proof." One has clearly V7 C_ ker r The inverse inclusion will be proved once we 

show that r induces an isomorphism V4/V7 , C | A | A | C. But this is the 

case since r maps s U Ls U s one-to-one onto a free Z-basis of C | A @ A | C. 

Indeed, for Vl,VS E C, ul ,us  E A, and the basis dements of s163  and Ls, 

respectively, we have 

I I (4.3) [~1, ul,  us, ~ ] r  = ~1 | ul | u2 | ~ ,  

[Ul,U2,Vl,  t~2] r = (--[I}I,Ul,US,VS]-~- [1}1,U2, Ul ,V2])r  

(4.4) = -v~ | u,  @ us @ v~ + v~ | us @ ul @ v~ 

= -v~ | [ul, uslvs | v'~, 

[Iv1, vsl, [ul, =sl]r =([.1,  ul,  =s, ~s] - Iv1, =s, =1, v=] 

- M , . 1 , u s , v l l  + M , u s , . 1 ,  v11)r 
I I I I 

(4.5) =v 1 @ Ul O u2 O vs - vl O u2 O ul O vs 

' ' ' @ u l | 1 7 4  - v  2 | | |  1 - v 2 

="~ | ["1, " & s  | '4 - v'~ | ["1, "21'~s | "'~, 
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where in (4.3) we have ul S ua with arbitrary vl, v2 E C, in (4.4) we have u~ > u2 

and vl _< v2, and in (4.5) we have Vl > v2 and ul > u2. It remains to note the 

elements (4.3), (4.4) and (4.5) form indeed a free Z-basis of C | A | A | C. | 

Now let al,a2 E A, cl E C, bl E B such that blfl = cl, and let b~ E B. We 

claim that  the map 

cl | al | a2 | b2 --* [bl, al ,  a2, b2] q- V9 

defines a G-homomorphism 

O: C | A | A | B --* V4/Vo. 

Indeed, we only need to check that the map is correctly defined. But this is clear 

since if b~ E B is another inverse image of Cl under fl, then bl = b~ 4- a ~ for some 

a t E A ,  so 

[b,, al, a2, h] = [b~ + a', al, a2, h] 

[b~,a~, ~1 + [a', a~,a2, ~1 ---- a2, 

= Ibm, al ,  a2, b2l rood V9 

as [a*,al,a2, b2] E V9. Let 0 denote the restriction of 0 to the subrnodule 

C | 1 7 4 1 7 4  C C | 1 7 4 1 7 4  i.e. for c E C and al ,a2,as E A we have 

(c | al | a2 | as)0 = [b, al,a2,as] + Vo where b E B with bfl = c. Now return 

to the hornnornorphisrn r Since V9 C ker r  r factors through V4/Vg, i.e. it 

determines a homornorphisrn r V4/V9 -4 C | A | A | C. It is readily seen that  

(4.6) 

0 �9 VT/V9 ,, �9 V4/V9 -~ �9 C | 1 7 4 1 7 4  ) 0 

T T' II 
0 ) C | 1 7 4  �9 C | 1 7 4 1 7 4  ~ ) C | 1 7 4 1 7 4  ) 0 

with A = 1 | 1 | 1 | fl is a commutative diagram with exact rows. 

LEMMA 4.2: There is an exact sequence 

0 . C |  I| C |  

Proof: For al ,a2 ,as ,c ,b  as above we get, by using the definitions of v3 and 0, 
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as well as the Jacobi identity and the anticommutativity law, 

(c | al | a2 | a3)(l | p3)~ 

= [b, al,  a2, a3] - [b, a2, al ,  a3] - [b, a3, al ,  a2] -4- [b, a3, a2, al] -4- V9 

-- - [a l ,a2 ,b ,  a3] - [[b, a3], [al, a2]] -4- V9 

= - [ a l ,  as, a3, b] + V9 

= O + V 9  

as [al, a2, a3, b] E Vg. Hence the image of 1 | v3 is in the kernel of 0. On the 

other hand, C | A | A | A has a free Z-basis consisting of all elements 

(4.7) v I | Ul | u2 | u3, ul _< u2 < u3, 

(4.8) v' | [u2, ua], u2 > us, 

(4.9) V' | [Ul, U2, U3]V3, U1 ~> "2 <~ U3, 

where ~' �9 C', ul,~,~, u~ �9 A (see Section 2). The elements (4.9) ~re a free Z-basis 

of the image of 1 @ u3. For the elements (4.7) and (4.8) we have 

( r  | - i  | -2 | u~)~ = [~ , . i ,  u2, u3] + Yg, 

(v' | -1 | [-2, u3]~)~  = Iv, ul,  u2, .3] - [ ~ , . 1 , . ~ , . 2 ]  + y~ 

= [[~1, u~], [~2, ~]] + ~ .  

Hence 0 maps the elements (4.7) one-to-one onto 1:7 Jr Vg, and the elements (4.8) 

one-to-one onto s + Vg. Therefore, Ker~ = Ira(1 @ v3), and this completes the 

proof of the lemma. | 

In view of the commutative diagram (4.6), we can now state the following. 

COROLLARY 4.3: There is a short exact sequence 

0--* C | L3A --* C | A | A | B --* V4/ V9 -* 0 

of  G-modules. 

We conclude this section with 

LEMMA 4.4: The map 

C1 ~ a ~ c 2  ~ c 3  ~ [bl,a, b2,b3] + V3, 



80 R. STOHR Isr. J. Math. 

where a E A, C l , C 2 , C  3 ~ C and bl,b2,b3 E B such that bifl = ci (i = 1,2,3), 

determines an isomorphism C | A | C | C ~ V1/V3. 

Proos It is easily checked that the above map is correctly defined, thus giving 

a G-homomorphism C | 1 7 4  --* V1/V3. The tensor product C | 1 7 4 1 7 4  

has a Z-basis consisting of all elements 

v l ' | 1 7 4 1 7 4  u E A ,  ' ' ' C' ' <  ' 7)1, ?)2, ?)3 E and ?)2 ?)3 

' | 1 7 4  ' ' ' ' C' ' ' and v I vs]u2 , u E ,4, vl,v2,vs E and v 2 > v 3. 

To show that our homomorphism is bijective, it remains to note that it maps this 

free Z-basis one-to-one onto (s U s + Vs. Indeed 

and 

I I 
?), | u | ?)2 | ?)~ -~ [?)1,-, ?)2, ?)31 + v3 

I I I 
?)1 | . | [?)~, ,,3]~2 = ?); | ,, | ?)'~ |  | ,, | ~,'~ |  

is mapped to 

[?)1, ~ ,  ?)5, ?)3] - [?)1, u,  ?)3, ?)21 + v3 = [[?)2, ?)3], [?)1, ~]] + v3. 

5. The h o m o m o r p h i s m  L4B --* (C | B) A (C | B) 

In this section we define and examine a homomorphism mapping the fourth Lie 

power L4B into the exterior square (C|174 We start with an embedding 

of the fourth Lie power into the exterior square of a tensor square. 

Let A be a Z-free G-module, and consider L4A. Let ~: L4A --* (A | A) A 

(A | A) be the composite of the embedding u4: L4A ~ T4A, the automorphism 

(1, 2): T4A -~ T4A determined by the action of the transposition (1, 2) E $4, i.e. 

for a, b, c, d E A we have (a | b | c | d)(1, 2) = b | a | e | d, and the canonical 

epimorphism T4A -.-, (A | A) A (A | A) given by a | b | c | d ~ (a | b) A (c | d). 

An easy calculation shows that 

[a, b, c, dl~ = 2(b | a) ^ (c | d) - 2(a | b) ^ (c | d) 

- 2(~ | c) ^ (b | d) + 2(b | c) ^ (~ | d). 

Hence the map 

[a,b,c,d] ---* ( b | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  
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defines a G-homomorphism 

7: L4A --* (A | A) ^ (A | A). 

LEMMA 5.1: The homomorphism 7 is an embedd/ng. 

Proof'. Let 6: ( A | A) A ( A | A) --* L4 A be the composite of the homomorphism 

(A|174  --* T4A defined by (a|174 --* a|174174174174174 the 

automorphism (1, 2): T4 A --* T4 A, and the canonical projection p4 : T4 A ~ L 4 A. 

A straightforward calculation using Wever's formula (2.5) with n = 4 shows that 

the composite of 7 and 5 amounts to multiplication by 4 in L4A: 75 = 4. Since 

L4A is free abelian, 75 is injective. Consequently, 7 is an embedding. | 

Now let B be as in Sections 3 and 4, and let 

L'B (C | B) ^ (C | B) 

denote the composite of 7: L4B ~ (B @ B) h (B | B) and the epimorphism 

(/9 | 1) ^ (~ | 1): (B | B) ^ (B | B) ~ (C | B) h (C | B). 

Hence for a, b, c, d 6 B we have 

[a, b, c, d]~ = (b~ | a) ^ (c~ | d) - (a~ | b) ^ (c~ | d) 

- (a~ | c) ^ (bZ | d) + (b~ | c) ^ ( .~  | d). 

LEMMA 5.2: 

(i) ger~0 = [B,A,A,B] 

(ii) Cokerg, ~- (C | C) ̂  (C | C)/(L'C)7. 

Proof." One has clearly from the definition that [B, A, A, B] = V4 is contained in 

the kernel of ~o. To prove the lemma it is therefore sufficient to show that ~ in- 

duces an embedding L4B/V4 ~ (C | B) ^ (C | B) with cokernel 

(C | C) ^ (C | C)/(L4C)7. In view of the short exact sequence 

O --* C | A "* C | B --* C | C --* O, 

the exterior square (C | B) ^ (C | B) has a filtration 

(C| A(C| =Wo _D W~ _D W2 
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where Wo/W, ~ (C | C) A (C | C), Wx/W~ ~ C | A | C | C, and W2 is the 

canonical image of (G | A) ^ (C | A) in (C | B) ^ (C | B). We claim the %0 

induces isomorphisms 

V~lV, ---. W~, V~lV~ > WUW~, 

and an embedding 

VolV, --} WolW~. 

Indeed,  for [[Vl, Ul], [v2,1/21] = [~1, B1, ~2, u2] -- IV1,1/1,1/2, i)2] �9 ,~3 we have 

[[t~l, 1/1] , [t~2, U211% O = (t~ | Ul) A ('U~ | ~2)" 

Hence %0 maps Vs/V4 isomorphically onto (C| A)A (C | A). By Lemma 4.4, we 

have an isomorphism C | A | C | C ~ V1/V3 given by 

c,  | a | c2 | ca ~ [ b , , a , ~ , b s ]  + V~ 

where a 6 A, bi 6 B and ci = bifl (i = 1,2,3). But 

[bl, a, b2, b31%0 ~-~ (cl | a) ^ (c 2 | b3) ~- (Cl | a) ^ (c 2 | c3) rood W2. 

Hence %0 induces an isomorphism V1/Vs 

mutative diagram 

W1/W2. Finally, we have the corn- 

L'C ~ �9 (C|174 

I I c'~''^cl| 

L4B ~ . (C | B) A (C | B) 

in which the left vertical homomorphism is the canonical projection L4B -* L4C 

induced by fl: B -} C. This shows that %0 induces the embedding 7 on the top 

quotients Vo/V, ~ L~C and Wo/W, ~- (C| of our filtrations of L4B 

and (C | B) ^ (C | B), respectively. Hence, %0 induces an embedding of L4B/V4 

into (C | B) ^ (C | B), and the cokernel of %o is isomorphic to the cokernel of 

7: L4C -'~ (C | C) A (C | C). This completes the proof of the lemma. | 

COROLLARY 5.3: There is a 4 - t e ~  exact sequence 

0 --. v4 ~ L4B ~ (C | B) ^ (C | B) ~ Coker %0 ~ 0. 
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6. Homology  of  four th  Lie powers 

In this final section we exploit our discussion of L4B to compute the homology 

of G with coefficients in L4IG and L4R~b. By Lemma 2.1(i),(ii), the homology 

groups with coefficients in L4R~b and L4IG in positive dimensions as well as the 

torsion subgroup of Ho(G, L4Rab) are 2-groups. Hence we can localize at 2 and 

work over g(2), the ring of 2-adic integers, instead of Z, as Hk(G,D | g(z)) 

Hk(G, D)| g(2) for any G-module D. We use "^" to denote localized objects, i.e. 

we write B, /~b, IG , . . .  instead of B | g(2), R~b | g(2), IG | g(2),... Suppose 

we are given a short exact sequence (3.1) of Z-free G-modules. Then we have the 

following exact sequences: 

(6.1) 0 - ,  L 'A  -~ ~ -~ L3A | O ~ O, 

(6.2) o --, O |  --, d |174174 ~ ~ / f 4  --, 0, 

(6.3) o ~ r ~ ~ ,  - .  ~',/f'9 -~ o, 

(6.4) 0 ~ ~ --* L4B ~, (C | B) ̂  (C | B) --, Coker~ --* O. 

The sequence (6.1) comes immediately from Proposition 3.1, (6.2) is the local- 

ized version of the sequence in CoroUary 4.3, (6.3) is obvious, and (6.4) is the 

localized version of the 4-term sequence in CoroUary 5.3. The following 1emma 

might appear rather clumsy. It provides, however, a unified approach towards 

H.(G, L4R~b) and H.(G, L4IG). 

LEMMA 6.1 : Suppose we axe given an exact sequence (3.1) such that the following 

four conditions hold. 

(i) B is a free G-module. 

(ii) G has no dements of order 2. 

(iii) Hk(G,C | La.4) = 0 for a// k >_ 1, and the homomorphism 

H0(G, C | La.4) --, Ho(G, C | .4 | .4 |  induced by the embedding 

in (6.2) is injective. 

(iv) Hk(G, Coker ~) is a torsion g~oup for ~ k > 2. 

Then 

Hk(G, L4A) ~ Hk+2(G, Coker ~) 
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[or a/l k > 1. If, in addition to (1) - Ov), we have that 
(v) Ho(G, f4/% ) is torsion- ee, 

then 

trio(G, L4A) ~ H2(G, Coker ~). 

Proof." Since B is a free G-module, r @ l | A @/~ is a free Z(2)G-module. 
In particular, it has trivial homology in all positive dimensions and 

Ho(G, C | .4 | .4 | B) is a free g(z)-module. Now apply the homology func- 

tot to (6.2). Then the long exact homology sequence implies, in view of the 

freeness of the middle term and condition (iii), that 

(6.5) Hk(a, f",/frg) = 0 

for all k > 1. Note also that H0(G,C @ LS.~l) -~ Ho(G, LSA | C) is torsion- 

free. Now apply the homology functor to (6.1) and consider the long exact. 

homology sequence. 

yield isomorphisms 

(6.6) 
(6.7) 

Then (iii) and the fact the Ho(G, LStl | r  is torsion-free 

Hk(G,L'i) ~- Hk(a,l?'9), k > I, 

tHo(G L ' I ) ~  tHo(G %) 

Now turn to (6.3) and apply the homology functor. Then the long exact homology 
sequence implies, in view of (6.5), that there are isomorphisms 

(6.8) H~(G,I~'9) ~ H~(G,~), k >_ 1. 

Moreover, if Ho(G, f"4/fzg) is torsion-free, that is condition (v) holds, we also have 

that 

(6.9) tHo(G, ~'9) ~- tHo(G, ~'4). 

Now we turn to (6.4). Since a has no 2-torsion and B is G-free, Lemma 2.1(iv) 

implies that L4/} and (C | B) h (C | are free Z(2)G-modules. Hence we get 

from (6.4) by dimension shifting 

(6.10) Hk(G, V4) ~- Hk+2(G, Coker~), k > 1, 

and, using condition (iv), 

(6.11) trio(G, f',) H2(G, Coker 
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Now the assertion of the lemma follows by combining (6.6) with (6.8) and (6.10) 

for the case k _> 1, and by combining (6.7) with (6.9) and (6.11) for the case 

k = O .  I 

Now we deduce our result about L4IG. 

THEOREM 6.2: Let G be a group without 2-torsion. Then H~(G, L4IG) = 0 for 

all k >_ I. 

Proof: We need to show that Hk(G, L4IG) = 0 for all k _> 1. For, we check 

that the conditions (i)-(iv) of Lemma 6.1 hold for the augmentation sequence 

0 --, IG ---, ZG - ,  Z ---, 0. 

This is clear for (i) and (ii), and (iii) holds by Lemma 2.1(ii) as 3-groups vanish 

under localization at 2. Moreover, we have Coker 95 = 0 as Coker 95 - (Z(2) | 

Z(2)) A (Z(2) | Z(2))/(L4Z(2))7 by Lemma 5.2, but  Z(2) | Z(2) -~ Z(2), so its 

exterior square is trivia/. In particular, condition (iv) holds. Now the theorem 

follows by Lemma 6.1. II 

We conclude the paper with the proof of our main result, Theorem 6.3, which 

is stated in Section 1. 

Proof  of  Theorem 6.3: It is sufficient to examine H. (G,  L4/~b).  We claim that 

conditions (i)-(v) of Lemma 6.1 hold for the relation sequence 

0 "--* Re.b --* P -"  IG ---, 0. 

This is clear again for (i) and (ii), and (iii) holds by Lemma 2.1(i). By Lemma 

5.2 we have a short exact sequence 

(6.12) 0 ~ L4IG ~ ( I0  | I0)  A (IG | I0)  ~ Coker 95 ~ 0. 

By Theorem 6.1, Hk(G, L4IG) = 0 for all k >_ 1. Hence the long exact homology 

sequence determined by (6.12) yields isomorphisms 

(6.13) Hk(a, Coker 95) ~ Hk(a, (Ir | Ir A (Ir | IG)), 

for all k > 2. Lemma 2.1(iii) tells us that 

(6.14) Hk(G, (10 | I0)  ^ ( I0  | I0)) ~- Hk+4(G, Z2) 
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for all k >_ 1. In particular, condition (iv) of Lemma 6.1 is fulfilled. Finally, to 

verify condition (v), note that (6.2) implies that 

(6.15) V4/V9 ~ 1G | (R~b | Rab | P/(L3R~b)~/3(1 | 1 | ~)). 

Put {~ = / ~ b  | Rffib | #/(L3R,,b)F/3(1 | 1 | Then the right hand side of (6.15) 

fits into the short exact sequence 

(6.16) o ~ I 0 |  -~ z<~)O| -~ 0 --. o, 

and Q itself fits into the short exact sequence 

(6.17) 0 -~ L 3 ~ b  -~ k.b | ~.b | P -4 Q -~ 0 

In view of Lemma 2.1(i), the long exact homology sequence determined by (6.17) 

implies that Hk(G, Q,) = 0 for all k >_ 1. Now the long exact homology sequence 

determined by (6.16) yields that H0(G, IG | r ~ H0(G, I74/V9) is torsion-free 

as it is embedded in the free Z(2)-module H0(G, Z(2)G | Q). This means we can 

apply Lemma 6.1 to the relation sequence. Hence there are isomorphisms 

Hk(G, L4R~b) ~ Hk+2(G, Coker~) (k > 1), 

trio(G, L4/~ffib) ~ H2(G, Coker ~). 

Now the theorem follows by combining these with (6.13) and (6.14). | 
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